Divergence‐free tangential finite element methods for incompressible flows on surfaces

نویسندگان
چکیده

منابع مشابه

Multiscale Finite Element Methods for Flows on Rough Surfaces

In this paper, we present the Multiscale Finite Element Method (MsFEM) for problems on rough heterogeneous surfaces. We consider the diffusion equation on oscillatory surfaces. Our objective is to represent small-scale features of the solution via multiscale basis functions described on a coarse grid. This problem arises in many applications where processes occur on surfaces or thin layers. We ...

متن کامل

Least Squares Finite Element Methods for Viscous, Incompressible Flows

This paper is concerned with finite element methods of least-squares type for the approximate numerical solution of incompressible, viscous flow problems. Our main focus is on issues that are critical for the success of the finite element methods, such as decomposition of the Navier-Stokes equations into equivalent first-order systems, mathematical prerequisites for the optimality of the method...

متن کامل

Gauge finite element method for incompressible flows

A finite element method for computing viscous incompressible flows based on the gauge formulation introduced in [Weinan E, Liu J-G. Gauge method for viscous incompressible flows. Journal of Computational Physics (submitted)] is presented. This formulation replaces the pressure by a gauge variable. This new gauge variable is a numerical tool and differs from the standard gauge variable that aris...

متن کامل

On the Divergence Constraint in Mixed Finite Element Methods for Incompressible Flows

The divergence constraint of the incompressible Navier–Stokes equations is revisited in the mixed finite element framework. While many stable and convergent mixed elements have been developed throughout the past four decades, most classical methods relax the divergence constraint and only enforce the condition discretely. As a result, these methods introduce a pressure-dependent consistency err...

متن کامل

Implementation of Implicit Finite Element Methods for Incompressible Flows on the Cm - 5

A parallel implementation of an implicit finite element formulation for incompress-ible fluids on a distributed-memory massively parallel computer is presented. The dominant issue that distinguishes the implementation of finite element problems on distributed-memory computers from that on traditional shared-memory scalar or vector computers is the distribution of data (and hence workload) to th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal for Numerical Methods in Engineering

سال: 2020

ISSN: 0029-5981,1097-0207

DOI: 10.1002/nme.6317